

Suction line length (including fittings equivalent lengths) 12.0 m Discharge line length (including fittings equivalent lengths) 50.0 m ID of the suction pipe 0.4064 m , ID of the discharge line 0.3556 m Water flow at $0.75 \mathrm{~m}^{3} / \mathrm{min}$.
The Fanning friction factor can be assumed at 0.008.

Pumping System

(a) Find the friction loss in the suction side of the pump.
(b) What is the pump inlet pressure?
(c) What is the power necessary to drive the pump?
$1 \mathrm{~atm}=101,325$ Pascal. $\rho=1,000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
Use the Bernoulli Equation:

$$
g\left(Z_{2}-Z_{1}\right)+\left(\frac{p_{2}}{\rho_{2}}-\frac{p_{1}}{\rho_{1}}\right)+\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)=\Delta W_{o}-\sum F
$$

Pumping System

(a) Find the friction loss in the suction side of the pump.

The friction loss is given by:

$$
F=\frac{2 V^{2} f}{D} L
$$

Need to calculate velocity:
$V=\left(4 / \pi D^{2}\right) Q=\left(4 / \pi 0.4064^{2}\right) .75 \mathrm{~m}^{3} / \mathrm{min}=0.09636 \mathrm{~m} / \mathrm{s}$ and $\mathrm{F}=2 * .09636^{2 *} 0.008 * 12 / 0.4064=0.0044 \mathrm{~m}^{2} / \mathrm{s}^{2}$

Pumping System

(b) What is the pump inlet pressure?

Use the Bernoulli Equation for the suction line:

$$
g\left(Z_{2}-Z_{1}\right)+\left(\frac{p_{2}}{\rho_{2}}-\frac{p_{1}}{\rho_{1}}\right)+\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)=\Delta W_{o}-\sum F
$$

So, $\quad g^{\star}(-0.5)+\left(p_{2}-p_{1}\right) / \rho+V_{2}{ }^{2} / 2=-F$
and $p_{2}=1,000\left(-0.0044+9.81^{*} 0.5-.09636^{2} / 2\right) \mathrm{kg} /\left(\mathrm{m} \mathrm{s}{ }^{2}\right)+$ $101,325 \mathrm{~Pa}=106216 \mathrm{~Pa}$ or 106.216 kPa absolute .

Think about cavitation!

Pumping System

(c) What is the power necessary to drive the pump?

Use the Bernoulli Equation between the end points:

$$
g\left(Z_{2}-Z_{1}\right)+\left(\frac{p_{2}}{\rho_{2}}-\frac{p_{1}}{\rho_{1}}\right)+\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)=\Delta W_{o}-\sum F
$$

So, $\quad g^{*} 24.5=\Delta W_{o}-\left(F_{s}+F_{d}\right)$
$\mathrm{F}_{\mathrm{d}}=2^{*} .125^{2 *} 50 * 0.008 / 0.3556=0.0356 \mathrm{~m}^{2} / \mathrm{s}^{2}$ and $\Delta \mathrm{W}_{0}=9.81 * 24.5+(0.0044+0.0356)=240.38 \mathrm{~m}^{2} / \mathrm{s}^{2}$ But Bernoulli above is per unit mass, so:
$240.38 \mathrm{~m}^{2} / \mathrm{s}^{2}$ * $1,000 \mathrm{~kg} / \mathrm{m}^{3}$ * $0.75 \mathrm{~m}^{3} / 60 \mathrm{~s}=3.004 \mathrm{~kW}$ Actual power with 75% efficiency: $P=3.004 / 0.75=4.00 \mathrm{~kW}$

Pumping System (Problem 12-1 in PT\&W)

Suction and discharge lines combined length of 46.0 m Five 90° elbows in the lines, ID of the pipe 0.078 m , Lean oil flow at $2.7 \mathrm{~kg} / \mathrm{s}$. Viscosity 15 cP , density $857 \mathrm{~kg} / \mathrm{m}^{3}$ What is the pump motor power, when the efficiency is 40% ?

Pumping System

(a) Find the friction loss in the pipe system.

The friction loss is given by: $\quad F=\frac{2 V^{2} f}{D} L$
Need to calculate the Fanning factor and the equivalent lengths.
$V=\left(4 / \pi D^{2}\right) Q=\left(4 / \pi 0.078^{2}\right) * 2.7 / 857 \mathrm{~m} / \mathrm{s}=0.659 \mathrm{~m} / \mathrm{s}$
So, Reynolds number $=\operatorname{DV} \rho / \mu=2,937$
From Moody diagram (Fig 12-1) and steel : $f=0.011$ Equivalent length (Table 12-1): 5*32*0.078 + $46=58.5 \mathrm{~m}$
and $\mathrm{F}=2 * 0.659^{2 *} 0.011 * 58.5 / 0.078=7.17 \mathrm{~m}^{2} / \mathrm{s}^{2}$

Pumping System

(b) What is the power necessary to drive the pump?

Use the Bernoulli Equation between the end points:

$$
g\left(Z_{2}-Z_{1}\right)+\left(\frac{p_{2}}{\rho_{2}}-\frac{p_{1}}{\rho_{1}}\right)+\left(\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)=\Delta W_{o}-\sum F
$$

So,
$g^{\star} 6.1+(445,000-101,359) / 857+0.659^{2} / 2=\Delta W_{0}-7.17$
$\Delta W_{0}=9.81 * 6.1+7.17+400.98+0.22=468.21 \mathrm{~m}^{2} / \mathrm{s}^{2}$
But Bernoulli is per unit mass, so:
$468.21 \mathrm{~m}^{2} / \mathrm{s}^{2} * 2.7 \mathrm{~kg} / \mathrm{s}=1.265 \mathrm{~kW}$
Actual power with 40\% efficiency: $P=1.265 / 0.4=3.18 \mathrm{~kW}$

Pressure loss

What is the pressure loss when $2.14 \mathrm{~kg} / \mathrm{s}$ of benzene at $40^{\circ} \mathrm{C}$ flows in a 21 m long pipe with ID $=0.0409 \mathrm{~m}$?
The pipeline has six 90° elbows, one tee used as an elbow (equiv. resistance is 60 pipe diameters), one globe valve, and one gate valve.
Density $849 \mathrm{~kg} / \mathrm{m}^{3}$, viscosity at $40^{\circ} \mathrm{C}$ is $5 \times 10^{-4} \mathrm{~Pa} \cdot \mathrm{~s}$

Pressure loss

Need to calculate the Fanning factor and the equivalent lengths.
Equivalent lengths (Table 12-1):
690° elbows
1 Tee
1 Gate valve (open)
1 Globe valve (open)

So, $L_{\text {eq }}=559 * 0.0409=22.9 \mathrm{~m}$, and $L=22.9+21=43.9$
$V=\left(4 / \pi D^{2}\right) Q=\left(4 / \pi 0.0409^{2}\right) * 2.14 / 849 \mathrm{~m} / \mathrm{s}=1.92 \mathrm{~m} / \mathrm{s}$
$\operatorname{Re}=D V \rho / \mu=1.33 \times 10^{5}$
From Moody diagram (Fig 12-1) and steel : $f=0.0053$
and $F=2$ * $1.92^{2 *} 0.0053^{*} 43.9 / 0.0409=41.9 \mathrm{~N} \mathrm{~m} / \mathrm{kg}$
Finally, $\Delta P=F \rho=41.9$ * $849=35,575 \mathrm{~Pa}$

